
Fall 2018 Programming Languages Qualifying Exam

CODE_______________________________

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

There are five (5) questions, each 20 points

1 | P a g e

Fall 2018 Programming Languages Qualifying Exam

1) Language Dynamic Memory

Consider the following code segment. Explain what happens at runtime and

what sort of runtime support may be used to address the issue. You should list at

least two different distinct methods for addressing the identified issue. Note: An

infinite loop is not the core issue.

String S;

while(true) S = new String(“hello”);

The runtime system could experience out of memory (on the heap). The

runtime system can address this by

1. ignoring the problem and allowing the operating system to make the

program have an exception for requesting memory not available (usually

a runtime error).

2. Maintaining an additional set of memory in the heap that keeps track of

references. When reference count is 0, then put back in the free list.

Requires that runtime system also perform some sort of garbage

collection

3. When memory is exhausted, have the memory allocation algorithm use

some form of mark/sweep which starts from variables in the stack and

walking references from there into the heap, marking all elements

reachable. Then take the remaining elements in the heap and garbage

collect them

2) Language Runtime Support

How do languages support threaded programs? Be precise about the

support needed for thread creation and thread termination. Be clear about

the typical start point (including the rational) of a thread, how data is

shared at startup of the thread and how resultant data is shared at thread
2 | P a g e

Fall 2018 Programming Languages Qualifying Exam

termination.

Most runtime systems that support multiple threads must partition the

runtime stack into individual stacks. When a thread is started, it starts at

the start of a function/subroutine call. Parameters passed in come via

reference pointer to a record of data (anonymous tuple) that can reside in

the heap, stack or data segments.

Since threads can run asynchronously, collecting return values directly

from the function/subroutine call is problematic. To alleviate this

problem the programmer either places the return value in a heap tuple or

can write to a common global data element (usually found in the data

segment).

3 | P a g e

Fall 2018 Programming Languages Qualifying Exam

3) Regular Expressions

 Consider the set of strings containing the letters {a,b} where each
element of the set has exactly one substring which contains aaa.

a) Provide a regular expression which represents this set of strings

The key to the answer is to generate strings with none, one or two as
and then add in the aaa at the end

 b*((a|aa)b+)*aaa(b+(a|aa))*b*

b) Consider the regular language (a|b)*bab. Create mechanically an
Non Deterministic Finite Automata (NFA) for the grammar.

TBD –READER SHOULD BE ABLE TO SEE PROPER RESULT

c) From your NFA in part b, create a Deterministic Finite Automata.

TBD – READER SHOULD BE ABLE TO DETERMINE PROPER RESULT

4 | P a g e

Fall 2018 Programming Languages Qualifying Exam

4) Language Design and Implementation

Consider Method Overloading. Describe how a language implements
method overloading. Be specific on what data structures are needed
and how they are used during compilation time (for compiled
languages) and during run-time for interpreted languages.

To manage method overloading, the symbol table must be enhanced to
allow the same named method to be in the symbol table, and is
differentiated with the number and types of the parameters. During
compilation, whenever a method ID is encountered, the compiler most
also determine the number and types of the method. The compiler
then uses the enhanced symbol table to determine if the appropriate
method is defined. Same applies for interpreted languages.

5) Functional Programming

a) write the function append which has the format

(append L1 L2) and returns a list where the elements of L1 are

appended to the front of L2 in the same order

(define (append L1 L2) ;; assumes L1 is a null ending list

 (cond ((null? L1) L2)

 (else (cons (car L1) (append (cdr L1) L2)))))

b) Using append, write flatten which takes a single list and creates a new

list with no embedded lists. For example :

 (flatten ‘((1 2) ((3) (((4)))))) == ‘(1 2 3 4)

5 | P a g e

Fall 2018 Programming Languages Qualifying Exam

(define (flatten L)

 (cond ((null? L) ‘())

 ((atom? (car L)) (cons (car L) (flatten (cdr L))))

 (else (append (flatten (car L)) (flatten (cdr L))))))

6 | P a g e

